Friday, May 14, 2021

The eyes of perseverance see a different Mars

Must read


To identify the elements – and, more importantly, determining whether they may have once harbored life – you need even more color. Some of these colors are even more invisible. This is where X-ray spectroscopy comes in.

Specifically, the team running one of the sensors on Perseverance’s arm – the Planetary instrument for X-ray lithochemistry, or PIXL – seeks to combine the elemental recipe for minerals with fine-grained textures. This is how you find stromatolites, layers of sediment with tiny domes and cones that can only come from mats of living microbes. Stromatolites on Earth provide some of the evidence for the very first living things here; Scientists at Perseverance hope they will do the same on Mars.

The leader of the PIXL team, an astrobiologist and field geologist at the Jet Propulsion Laboratory named Abigail Allwood, has already done it. She used this technology in conjunction with high resolution images of sediment to find signs of first known life on Earth in Australia – and to determine that similar sediments in Greenland were not evidence of ancient life there. It is not easy to do in Greenland; it will be even more difficult on Mars.

X-rays are part of the same electromagnetic spectrum as light that humans see, but at a much lower wavelength – even more ultra than ultraviolet. It is ionizing radiation, a color only if you are a Kryptonian. X-rays cause different types of atoms to fluoresce, emit light, characteristically. “We create the x-rays to bathe rocks, and then detect that signal to study elemental chemistry,” says Allwood. And PIXL and the arm also have a bright white flashlight on the end. “The lighting on the front started out as a way to make rocks easier to see, to tie chemistry to visible textures, something that hasn’t been done before on Mars,” Allwood explains. The color was a bit annoying at first; heat and cold affected the blisters. “We tried white LEDs first, but with the changes in temperature it didn’t produce the same shade of white,” she says. “So the guys in Denmark who provided us with the camera, they provided us with colored LEDs.” These were red, green and blue – and ultraviolet. This combination of colors added to create a better and more consistent white light.

This combination could make it possible to find Martian stromatolites. After locating probable targets – perhaps thanks to Mastcam-Z’s pans across the crater – the rover will straighten up and extend its arm, and PIXL will begin to lash. The smallest strokes, grains and veins, can tell if the rock is igneous or sedimentary, melted like a stew or layered like a sandwich. The colors of the layers on top of the other characteristics will give a clue to the age of each. Ideally, the visible color and texture map will align with the invisible, digital-only map that the x-ray results generate. When the right structures line up with the right minerals, Allman can tell if she has Australian type signs of life or a Greenlandic type bust. “What we’ve found that’s really interesting with PIXL is that it shows you things that you don’t see, through chemistry,” says Allwood. “That would be the key.”

Allwood is hoping that PIXL’s tiny scans will yield huge results – an inferred 6,000 individual point map on the postage stamp-sized field of view of the instrument, with multiple spectral results for each. She calls it a “hyperspectral datacube”.

Of course, Perseverance has other cameras and instruments, other scanners looking for other clues of significance in pieces of rock and regolith. Next to PIXL, there is a device that looks at rocks in a whole different way, projecting a laser at them to make their molecules vibrate – that’s Raman spectroscopy. The data Perseverance collects will be hyperspectral, but also multifaceted – almost philosophically. This is what happens when you send a robot to another planet. A human mission or rocks sent home by sample return would yield the best truth data on the ground, as one exoplanet researcher told me. A little behind that is X-ray and Raman spectroscopy, then moving cameras, then orbital cameras. And of course, all of these things work together on Mars.

“Finding life on Mars will not be:” Such and such an instrument sees something “. It will be, “All instruments have seen this, that, and the other, and interpretation makes life reasonable,” Allwood says. “There is no smoking gun. It is a complicated tapestry. And like a good tapestry, the whole image emerges only from a warp and weft of color, carefully threaded together.


More WIRED stories

- Advertisement -spot_img

More articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisement -spot_img

Latest article